Fourier transforms for fast and quantitative Laser Speckle Imaging

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative modeling of laser speckle imaging.

We have analyzed the image formation and dynamic properties in laser speckle imaging (LSI) both experimentally and with Monte Carlo simulation. We show for the case of a liquid inclusion that the spatial resolution and the signal itself are both significantly affected by scattering from the turbid environment. Multiple scattering leads to blurring of the dynamic inhomogeneity as detected by LSI...

متن کامل

Fast Fourier Transforms

29 O(b log(b)) operations (using standard multiplication). As there are O(b= log(b)) primes in total, the running time of this stage of the algorithm is O(b 2 L), even using the \grammar school" method of integer multiplication. At this stage of the algorithm we have obtained a vector of length L whose entries are integral linear combinations of powers of with coeecients bounded by M in absolut...

متن کامل

Dimensionless Fast Fourier Transforms

This paper shows that there are fast Fourier transform (FFT) algorithms that work, for a fixed number of points, independent of the dimension. Changing the dimension is achieved by relabeling the input and the output and changing the “twiddle factors.” An important consequence of this result, is that a program designed to compute the 1-dimensional Fourier transform can be easily modified to com...

متن کامل

Fast algorithms for fractional Fourier transforms

The fractional Fourier transform (FRFT) is a one-parametric generalization of the classical Fourier transform. The FRFT was introduced in the 80th and has found a lot of applications and is now used widely in signal processing. Both the space and the spatial frequency domains, respectively, are special cases of the fractional Fourier domains. They correspond to the 0th and 1st fractional Fourie...

متن کامل

Fast Algorithms for the Hypercomplex Fourier Transforms

In multi-dimensional signal processing the Cliiord Fourier transform (CFT or in the 2-D case: quater-nionic Fourier transform/QFT) is a consequent extension of the complex valued Fourier transform. Hence, we need a fast algorithm in order to compute the transform in practical applications. Since the CFT is based on a corresponding Cliiord algebra (CA) and CAs are not commutative in general, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2019

ISSN: 2045-2322

DOI: 10.1038/s41598-019-49570-7